(3x+2)=(4x^2-7x+1)

Simple and best practice solution for (3x+2)=(4x^2-7x+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x+2)=(4x^2-7x+1) equation:



(3x+2)=(4x^2-7x+1)
We move all terms to the left:
(3x+2)-((4x^2-7x+1))=0
We get rid of parentheses
3x-((4x^2-7x+1))+2=0
We calculate terms in parentheses: -((4x^2-7x+1)), so:
(4x^2-7x+1)
We get rid of parentheses
4x^2-7x+1
Back to the equation:
-(4x^2-7x+1)
We get rid of parentheses
-4x^2+3x+7x-1+2=0
We add all the numbers together, and all the variables
-4x^2+10x+1=0
a = -4; b = 10; c = +1;
Δ = b2-4ac
Δ = 102-4·(-4)·1
Δ = 116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{116}=\sqrt{4*29}=\sqrt{4}*\sqrt{29}=2\sqrt{29}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{29}}{2*-4}=\frac{-10-2\sqrt{29}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{29}}{2*-4}=\frac{-10+2\sqrt{29}}{-8} $

See similar equations:

| 3r+1=-13+r | | 5(x+8)^2=90 | | t/4=-33.14 | | 3(2a+3)-4(3a-)=15 | | 0.4(x-10)=-8 | | 7x+5(-4x-14)=-5 | | 16-2x+2x=-64 | | -35-4b=3(1+5b) | | 6=x/1000 | | 2/5(x-10)=-8 | | 3x^2/3-16=59 | | 42-(3c+4)=2c+14+c | | -9(x-9)=-5+49 | | 5(3x-1)=17-x | | 47=-7x+2(-3x-22) | | 9–5g=-4g | | -9u+9=9(u+5) | | 5(x-44=12 | | -10s–4=-1–10s | | -2(x+1)=3x-47 | | 2/15x^2+1/3x=1/5 | |   4(x–3)=4x–12 | | -59=5x-4(5x-4) | | Y=-5x+150 | | |4x+2|=18 | | 8(y-2)=-8y+16 | | 14+2y=5y-9 | | 95x=55x+60 | | _59=5x-4(5x-4) | | -198=3x+3(2x-30) | | -2u+22=2(u-1) | | (y-6)^2=16 |

Equations solver categories